https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO₂ photoreduction https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:46850 2 photoreduction into solar fuels is promising for generating renewable energy. Herein, SrBi2Nb2O9 nanosheets are prepared as high-performance photocatalysts for CO2 reduction, highlighting superiority of ferroelectric polarization and anisotropic charge migration. Ferroelectric polarization within SrBi2Nb2O9 nanosheets provides an in-built electric field, which greatly facilitates the bulk charge separation. Also, the photogenerated electrons and holes migrate separately to the NbO6 octahedral layers and within the ab-plane in the Bi2O2 layers, achieving efficient anisotropic charge migration. Without co-catalyst or sacrificial agent, SrBi2Nb2O9 nanosheets show outstanding CO2 reduction activity in producing CH4. The ferroelectric polarization is further enhanced by electric poling and annealing post-treatments. The electrically poled SrBi2Nb2O9 shows a high CH4 evolution rate of 25.91 μmol g−1 h−1 with an AQE of 1.96 % at 365 nm, exceeding most of state-of-the-art photocatalysts reported to date. This work paves an avenue for development of highly efficient photocatalysts and beyond by tuning the ferroelectricity and electronic structure.]]> Mon 29 Jan 2024 18:48:21 AEDT ]]> Surface-halogenation-induced atomic-site activation and local charge separation for superb CO₂ photoreduction https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:36540 Mon 01 Jun 2020 12:07:38 AEST ]]> Three-in-One oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:44274 2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g−1 h−1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.]]> Fri 23 Jun 2023 09:56:26 AEST ]]>